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Summary 

Introduction and Background: This study investigates the impacts of autonomous vehicles (AVs) 
on household travel-activity patterns in the Oahu MPO study area. Over the past decade, Honolulu 
households have faced several emerging mobility options. These range from the start of Biki 
bikeshare in 2011, Lime e-scooters in 2018 and the opening of the Honolulu Authority on Rapid 
Transportation (HART) Rail System, scheduled for the summer of 2023. Future scenarios for the 
region include autonomous vehicles, which are anticipated to weave into the set of household 
mobility options. Forecasting for regional scenarios characterized by these mobility options 
begins with understanding the potential changes they bring to household travel patterns, including 
the scheduling of out-of-home activities. The overarching goal of this study is to understand how 
AVs and the HART rail system would potentially shift household travel patterns, leading to varying 
benefits and feasibility. Through this study, we address the following broad questions: 

A) Which households will benefit from AVs, with respect to their travel patterns? With respect 
to regional travel patterns, while the regional benefits from AVs have broadly envisioned 
and discussed, the impacts to households or other decision makers are less clear. This study 
begins to address the question of who potentially benefits, while recognizing that these 
impacts are contingent on future conditions which face varying uncertainties. 
 

B) How will the HART rail system affect AV impacts on households? Parallel to the expectation 
of AVs is the opening of the HART rail system. This study also considers how to account 
for the impacts from the availability of the rail. 
 

Analysis Approach: Forecasting travel-activity patterns requires a crystal ball or forecasting tools, 
conventionally accomplished with a model, which could be a computer simulation, econometric 
and/or machine learning-based, synthesis of real-world case studies, or a combination of the above. 
Developing forecasting tools begins with models that reflect travel-activity pattern changes. In this 
study, we adopt the perspective of households as service providers that dispatch a vehicle fleet to 
service out-of-home activities. Analogous service systems include delivery logistics providers (e.g. 
FedEx, UPS, USPS, DHL, etc.), rideshare TNCs (e.g. Uber, Lyft, etc.) and emergency service 
providers (EMS, Municipal Fire Departments, etc.). 

From this perspective, households have a set of out-of-home activities that need to be completed; 
they must decide how many household vehicles to dispatch, their routing and their scheduling of 
stops (timing and sequencing). The transportation systems literature refers to this class of decision 
problems as the Vehicle Routing Problem (VRP), which includes its variations. These include a 
VRP with (a) pick-up/deliveries; (b) time windows and schedule constraints; (c) multimodal fleets 
and (f) others operational constraints of the decision-making context. Conventionally, these 
problems are driven by the objective of optimizing along relevant dimensions, such as travel time, 
travel cost and other performance metrics. 

In this study, for the households in the 2012 Oahu Household Travel Survey, we solve a VRP with 
pick-up/deliveries for their required set of out-of-home activities; these are observed in their daily 



patterns collected from the survey. We consider a decision context where the objective is to 
minimize travel and idle times of an AV fleet. AVs are assumed to be Level 4, with full autonomy 
and other operational characteristics derived from the literature. For example, these include 
envisioned futures where AVs pick-up groceries or other complete other services without human 
intervention, or where an AV operates as a taxi service, dropping-off/picking-up human passengers 
with no parking requirements (Cusack 2021). Schedule activity constraints are assumed, based on 
activity type. For example, we assume grocery shopping activity start times have a time window 
of 9AM-10PM. School and work activities are assumed to have a very strict narrow time window 
reflective of their mandatory nature. While these assumed constraints will likely differ from real-
world constraints faced by each individual traveler, to operationalize the modeling approach and 
arrive at a solution, assumptions were necessary. 

Solving the Household VRP: The literature as established that solving the VRP class of problems 
is NP-hard, indicating that the computational time to reach a solution increases infeasibly (non-
polynomial time) as the size of the problem (number of stops, network size, etc.) increases. Given 
our defined Household VRP, a set of heuristics were used to feasibly solve the VRP for our analysis 
sample of 2,967 households. Heuristics used in this study include: (a) Clark-Wright Savings (CW) 
and (b) the Node Insertion family (N1, N2, N3) of heuristics (Solomon 1987). Each heuristic and 
their assumed set of parameter values result in solutions that favor different metrics, such as vehicle 
travel time or idle time.  A comparison performance for these heuristics was completed.   

Results and Conclusions: Which households will benefit? – To assess potential benefits and 
reasonable responsiveness of households with AVs, we evaluated changes in performance metrics 
between the status quo and different AV scenarios. The status quo travel-activity pattern, for each 
household, is assumed to be their observed travel-activity patterns from the 2012 Oahu Household 
Travel Survey. Their AV scenario patterns were the final solutions solving their respective 
Household VRP with each heuristic. Performance metrics considered include the total travel time 
across all household vehicles and the total number of vehicles required to complete the set of out-
of-home activities. Network performance metrics (travel times on link, routes, etc.) were taken 
from the Oahu Travel Demand Forecasting Model (TDFM). 

To provide a basis for discussion or results, the planning districts defined by the Oahu MPO were 
used to characterize households spatially across Oahu. Given the assumptions of this study, with 
respect to AVs, households in the Wai'anae and East Honolulu districts stand to benefit in terms of 
total household travel time savings, relative to the existing pattern, controlling for other household 
characteristics. Relative to other planning districts, the average marginal improvement from 
households in these two planning districts have the following ranges, depending on district: 
Wai'anae – 13.7 to 15.2 minutes; East Honolulu – 6.7 to 9.6 minutes. These two planning districts 
show consistent marginal benefits from having an AV fleet. Model results also indicate that the 
Ewa planning district had an estimated marginal total travel time improvement of 11.9 minutes per 
household under an AV context, while the Ko'olau Loa district showed a marginal increase of 21.4 
minutes, but for only for one set of heuristic parameters. With respect to the number of household 
vehicles required, under the AV scenario, all heuristic solutions produced a reduction, except for 
travel-activity patterns produced from the Clark-Wright Savings (CW) heuristic.  



How will the HART system affect the impacts of AVs on Households? – For scenarios where the 
HART system was introduced, the change in impacts from AVs was marginal. However, this was 
under the conservative assumption that only households observed using an express bus route on 
The Bus system would try to incorporate HART for at least a portion of their travel chain segment 
in combination with an AV. To fully understand the impact of the HART station, future ridership 
levels, including household demographics, would need to be determined.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1.0 Introduction and Background: Mobility in Honolulu 

In the Oahu MPO study area, 70 percent of households are within one-quarter mile of a bus stop, 
and approximately two-thirds of residents drive alone to work. Additionally, the average commute 
time by public transportation takes approximately twice as long as the average commute time by 
car. Many residents state that public transportation services average between 30 minutes to an hour, 
and they need to make multiple transfers to reach a destination only a few miles from their 
household origins (OMPO 2021; Lyte 2018). Those who live in the rural and urban fringe areas of 
Oahu expressed that public transportation services, such as TheBus and TheHandi-Van, are limited 
compared to urban Honolulu. These issues are documented in the Mobility Report for the Oahu 
MPO area (OMPO, 2021). Within this mobility context, Honolulu households have witnessed 
several emerging mobility options for travelers. These range from Biki bikeshare in 2011, Lime e-
scooters in 2018 and the opening of the Honolulu Authority on Rapid Transportation Rail System 
(HART), set for 2023. In the future, autonomous vehicles are also anticipated to weave into the set 
of mobility options. Forecasting for regional scenarios characterized by these mobility options 
begins with understanding the potential shifts they bring to household travel-activity patterns, 
including the scheduling of out-of-home activities.  

The overarching goal of this study is to understand how the introduction of AVs and the HART 
system to Oahu could potentially change household travel patterns. Through this study, we address 
the following broad questions: 

A) Which households will benefit from AVs, with respect to their travel patterns? With respect 
to regional travel patterns, while the regional benefits from AVs have broadly envisioned 
and discussed, the impacts to households or other decision makers are less clear. This study 
begins to address the question of who potentially benefits, while recognizing that these 
impacts are contingent on future conditions which face varying uncertainties. 
 

B) How will the HART rail system affect AV impacts on households? Parallel to the expectation 
of AVs is the opening of the HART rail system. This study also considers how to account 
for the impacts from the availability of the rail. 

The remainder of this section presents background literature on the definitions and concepts related 
to autonomous vehicles and modeling their impacts on travel-activity behaviors. This is followed 
by sections on the presentation of the analysis framework and results. 

 

1.1 Autonomous Vehicles (AVs): Definitions and Concepts  

Significant improvements in vehicle communication and sensor technologies have resulted in an 
increasing interest in estimating the potential benefits of autonomous vehicles (AVs) among 
transportation planners and policymakers (Anderson et al. 2014). The National Highway Traffic 
Safety Administration (NHSTA) proposed characterizing AVs on a scale from level 0 to 4, where 
level 0 refers to complete driver control and level 4 refers to vehicles that perform all safety-critical 
functions for the entire trip with no expected control from drivers (USDOT 2015). Less attention 



has been paid to how travelers will eventually use AV for completing activity programs, especially 
given a household fleet of other mobility resources. In comparison to other emerging vehicle 
technologies in the past, such as electric vehicles (EVs), AVs present a wider latitude of operational 
characteristics that differ from conventional vehicles. 

1.2 Autonomous Vehicles (AVs): Modeling Travel/Activity Patterns 

Investigating the behavioral implications of AV on household travel and activity patterns opens the 
door to a wide range of methodological directions under the umbrella of activity-based approaches 
to travel analysis. Under this approach, travel is a derived demand from the need to participate in 
activities, subject to space-time constraints. Recognizing that individual trips are components 
integrated into a more complex travel and activity pattern, an impressive body of research work 
has been produced that model and operationalize this perspective (Rindt and McNally, 2007; 
Timmermans and Zhang, 2009; Pinjari and Bhat, 2011). Within this literature, four main directions 
have emerged for modeling travel and activity patterns.  

Constraint-Based: One direction witnessing considerably contribution from geographers, planners 
and engineers focuses on the space-time constraints of activities (Hägerstraand 1970). Using an 
activity program as input, these models consider the feasibility of a set of patterns with respect to 
a set of constraints, such as business hours for commercial or retail organizations. An activity 
program characterizes a set of activities and their associated durations and time windows. The 
number of feasible activity schedules, subject to these constraints, is often used as a measure of 
flexibility in space-time environments faced by travelers (Ettema and Timmermans, 2007, Lee et 
al. 2009). These space-time constraints are usually characterized by (a) potential activity locations; 
(b) travel mode and accessibility; and (c) network travel times and costs between locations per 
travel mode. Additionally, these constraints reflect (i) the sufficiency of time duration between the 
end time of the previous activity and start time of the next activity; (ii) the earliest possible start 
time and latest end time; and (iii) activity sequencing conditions.  

Implemented constraint-based models have been produced since the inception of the activity-based 
approach, which include PESAP (Lenntorp 1979) and CARLA (Jones et al. 1983), and more recent 
ones including MASTIC (Dijst and Vidakovic 1995) and GISICAS (Kwan 1997). An advantage 
of constraint-based models is the ability to determine a feasible set of potential activity patterns 
versus a single preferred path from a pre-defined set of alternatives. However, with respect to 
forecasting and prediction, these models currently cannot easily account for adjustment and/or 
rescheduling which are likely caused by changes in space-time constraints (Lee and McNally 2003, 
Roorda and Miller 2005, Joh et al. 2008).  

Econometric: A second approach views activity patterns as the outcome of utility-maximizing 
decisions or choices, which serve as a theoretical foundation of econometric models of discrete 
choice. Given a choice set of activity patterns, each alternative is assumed to be adequately 
represented as bundles of attribute levels, each contributing to the overall utility of the alternative. 
The body of research work on discrete choice modeling and travel and activity patterns is vast and 
intellectually rich, examining a broad range of dimensions, from in-home vs. out-of-home (Akar 
et al. 2011), to choices among complete activity-travel patterns (Bowman and Ben-Akiva 2001) 



and rescheduling adjustments (Sun et al. 2005). These econometric approaches capture preferences 
for one single pattern over another with respect to combinations of attributes levels. 

Simulation and Process – A third approach conceptualizes activity scheduling as a process that can 
be modeled and simulated through computational methods, such as agent-based modeling and 
other simulation approaches. As a basis for the decision models and their associated behavioral 
parameters, several of these models incorporate econometric discrete choice models of scheduling 
decisions (Recker et al. 1986; Kitamura Fujii 1998, Arentze and Timmermans 2009). Validating 
the decision rules used is a major hurdle for these models. These approaches explicitly recognize 
and embrace the complexity in modeling travelers’ scheduling process, in contrast to 
oversimplifying through a trip-based model system. These decision process models represent one 
distinct promising direction for operational models, but, perhaps more importantly, they easily 
provide a testbed for alternative activity scheduling behavior conceptual frameworks. 

Mathematical Programming or Vehicle Routing Problem (VRP) Approaches: A fourth approach 
considers household activity patterns as an outcome or solution to optimizing an objective function 
in the form of a generalized cost function with a set of space-time constraints. From this 
perspective, these models share the ability to consider feasible space-time activity patterns like 
constraint-based approaches and have the potential for capturing utility-maximizing decision rules 
like discrete choice models. Within the transportation analysis literature, one example is the 
Household Activity Pattern Problem (HAPP) formulation developed by Recker (1995) in response 
to limitations in the STARCHILD model (Recker et al. 1986). The HAPP model is a variation of 
the "pick-up and delivery problem with time windows" (PDPTW) common in operations research. 
Households will "pick-up" activities at various locations, accessing these locations using 
household transportation resources and reflecting interpersonal and temporal constraints, and 
"deliver" these activities by completing a tour and returning home. HAPP is constructed as a 
mixed-integer mathematical program and explicitly reflects a full range of travel and activity 
constraints. Since its introduction, the HAPP model has been extended to account for rescheduling, 
stochastic activity completion (Gan and Recker, 2013) and locations (Kang and Recker 2013). A 
recent application also integrates HAPP with the network design problem (Kang et al. 2013). 
Additionally, HAPP has been applied to a wide range of contexts, such as traffic control for vehicle 
emissions (Recker and Parimi 1999) and refueling hydrogen fuel vehicles (Kang and Recker 
2014). An important methodological issue is the estimation of parameters in the objective function 
in HAPP, which would interest many in the travel analysis community concerned with 
operationalizing HAPP with travel-activity data from conventional datasets. Two main approaches 
have surfaced in response to this need. The first uses similarity metrics to infer the relative 
importance of spatial and temporal factors associated with out-of-home activities. A more recent 
effort to calibrate HAPP with larger datasets approaches the problem as an inverse optimization 
problem, where the decision variables are the coefficients of the cost function, given an optimal 
path (Chow and Recker 2012). HAPP holds great potential for extensions, both as a pure activity-
based framework and as a bridge to conventional discrete choice models of travel behavior. 

 



1.3 Synthesis 

Autonomous vehicles are considered in the range of emerging mobility options for metropolitan 
regions, such as Oahu. While their real-world adoption at the consumer level is beyond the near 
future, forecasting for long-range transportation planning scenarios will require considering their 
impacts on households travel patterns. Several methods exist in the literature for modeling these 
impacts. The next section describes the modeling approach taken in this study based on the 
literature. 

 

2.0 Analysis and Modeling Framework 

Forecasting regional travel-activity patterns requires a crystal ball, conventionally accomplished 
with methods such as computer simulations, data-driven econometric or machine learning 
approaches, synthesizing case studies, or a combination of the above. Developing forecasting tools 
sensitive and responsive to future contexts with new mobility options, begins with developing 
models that reflect travel pattern changes in response to difference contexts, such as adoption of 
AVs. This requires understanding these changes and their directions. The analysis and modeling 
framework for this study is summarized in Figure 1 below. The framework begins with the 
perspective of households as vehicle fleet dispatchers with out-of-home activities that need to be 
completed. Data on the scheduling constraints and transportation system performance levels 
(travel times, etc.) are assembled for each household’s individual VRP. 

 

 

Figure 1. Study Modeling Approach and Framework 



In this framework, we view households as analogous to service systems such as delivery logistics 
providers (e.g. FedEx, UPS, USPS, etc.), rideshare TNCs (e.g. Uber, Lyft, etc.) and emergency 
response services (EMS, Municipal Fire Departments, etc.). From this perspective, households 
have a set of out-of-home activities that need to be completed; they must decide how many 
household vehicles to dispatch, their routing and their scheduling of stops (timing and 
sequencing). This decision problem is known in the literature as the Vehicle Routing Problem 
(VRP) and its variations. These include VRPs with (a) pick-up and deliveries; (b) time windows 
and schedule constraints; (c) others operational constraints of the decision context. Conventionally, 
these decisions are driven by the objective of optimizing along dimensions, such as travel time, 
travel cost and other performance metrics.  

After the assembly of network performance and schedule constraint data from the 2012 Oahu 
Household Travel Survey and the OMPO Travel Demand Forecasting Model (TDFM), 
respectively, we solve each household’s individual VRP. Specifically, we solve the VRP for the set 
of out-of-home activities in their daily observed pattern. We consider a decision context with “pick-
up/delivery of activities” and the objective of minimizing travel time and idle time of the vehicle. 
AVs are assumed to be Level 4, with full autonomy and other operational characteristics derived 
from the literature. For example, these include AVs picking up groceries or completing other 
services without human intervention. This also includes the envisioned function as a taxi service 
dropping-off/picking-up human passengers with no parking (Cusack 2021).  

 

2.1 Activity Scheduling Constraints 

To operationalize the household VRP (described in the following section), schedule constraints 
faced by household activities requiring completion need to be defined. The literature provides little 
guidance on how to determine these schedule constraints. While there is a sizeable amount of 
literature on travel time and cost budgets faced by individual and households, operationalizing a 
household VRP also requires acceptable time windows for activity start times. For example, we 
may observe a household with a grocery shopping activity beginning at 4:35PM in the Oahu 
Household Survey. However, from a scheduling perspective, the time window may be as wide as 
the store hours or as narrow as a 30-minute time window, due to other constraints faced by the 
households. Without further study, knowing the scheduling constraints faced by specific 
households is difficult to determine. Regardless, we assume schedule constraints based on the type 
of activity to operationalize the household VRP. An example of the reasoning that underlies our 
assumptions are school and work activities, which are assumed to have a very narrow time window 
reflective of their mandatory nature. Once again, while these assumed schedule constraints will 
likely differ from real-world constraints faced by each individual traveler, to operationalize the 
modeling approach, they were necessary. The assumed schedule constraints on start times are 
presented below in Table 2.  

 

 



 

Activity Type Rule 
Mandatory with "hard" Start Times Within 30 mins +/- of observed start time 

Maintenance Shopping  Published Store Hours 
Government Office Visits or Services  Published Service Hours 

Social and Recreational Within 60 mins +/- of observed start time 
All Other Activities 5AM-10PM (feasible day) 

 

Table 1: Assumed Activity Start Time Constraints 

Additionally, activity finish time constraints were also assumed, but with less restrictiveness than 
activity start times. Activity durations were taken from Oahu Survey Sample. For example, if 
households observed eating for 1.5 hours, then the eating activity was assumed to require 1.5 hours 
in duration in subsequent analysis. Given the set of out-of-home activities with their schedule 
constraints (activity start/finish time windows and durations), for our household sample, a VRP is 
solved for each household. 

 

2.2 Household Vehicle Routing Problem (VRP) 

The mathematical programming approach is adopted for its ability to account for sequencing and 
timing of activities and/or location visits relative to an objective function of generalized costs and 
space-time constraints. Additionally, this approach easily allows for the exploration of alternative 
scenarios characterized by varying constraints and objective function specifications. While several 
extensions have been made since the first introduction, to provide a foundation from which to 
make extensions to in-vehicle activities the original HAPP formulation (Recker 1995) was used as 
the starting point. To take advantage of previous work, a deliberate attempt was made to maintain, 
to every extent possible, both the notation and structure of the original HAPP model. While many 
AV operations could be considered, such as dropping off one passenger at one location then 
picking-up a second passenger at a second location, this study only examines extensions dealing 
with in-vehicle activities, which are impossible or very difficult for drivers of conventional 
vehicles for safety reasons. 

Consider the activity program where a set of mandatory activities n and a set of 𝐼𝐼𝐼𝐼 activities can 
be completed in-vehicle in an autonomous vehicle or similar mobility service. An activity program 
characterizes a set of activities and their associated durations and time windows. The following 
notation is adopted: 

𝐴𝐴 = {1,2, … ,𝑛𝑛,𝑛𝑛 + 1, … ,𝑛𝑛 + 𝐼𝐼𝐼𝐼} 

Set of 𝑛𝑛 + 𝐼𝐼𝐼𝐼 out-of-home activities scheduled 
for completion by household travelers; a total of 
n mandatory activities can only occur out-of-
vehicle; a total of 𝐼𝐼𝐼𝐼 activities can only occur 
in-vehicle (this is relaxed in a later extension);  



𝐼𝐼 = {1,2, … , |𝐼𝐼|} 
Set of autonomous or conventional vehicles 
used by travelers in the household to complete 
their scheduled activities; 

𝑃𝑃+ = {1, . . ,𝑛𝑛} 
Set designating the locations for mandatory 
activities that can only be completed at these 
locations; 

𝑃𝑃𝐼𝐼𝐼𝐼+ = {𝑛𝑛 + 1, … ,𝑛𝑛 + 𝐼𝐼𝐼𝐼} Set of in-vehicle activities that can only be 
completed in-vehicle; 

𝑃𝑃�+ = 𝑃𝑃+ ∪ 𝑃𝑃𝐼𝐼𝐼𝐼+  Set of all activity pickups; 

𝑃𝑃− = {𝑛𝑛 + 𝐼𝐼𝐼𝐼 + 1, 𝑛𝑛 + 𝐼𝐼𝐼𝐼 + 2, . . . , 2𝑛𝑛 + 𝐼𝐼𝐼𝐼} Set designating the ultimate destinations of 
return-to-home trips for each pickup in 𝑃𝑃+; 

𝑃𝑃𝐼𝐼𝐼𝐼− = {2𝑛𝑛 + 𝐼𝐼𝐼𝐼 + 1, … ,2𝑛𝑛 + 2𝐼𝐼𝐼𝐼} Set designating the ultimate locations for in-
vehicle activities in 𝑃𝑃𝐼𝐼𝐼𝐼+ ; 

𝑃𝑃�− = 𝑃𝑃− ∪ 𝑃𝑃𝐼𝐼𝐼𝐼−  Set of all activity drop-offs; 

𝑃𝑃 = 𝑃𝑃�+ ∪ 𝑃𝑃�− Set of all pick-up and drop-off nodes; 

𝑁𝑁 = {0,𝑃𝑃, 2(𝑛𝑛 + 𝐼𝐼𝐼𝐼) + 1} Set of all nodes, including those associated 
with the initial and final departure from home; 

[𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖]  
The time window for the available start times 
for activity i; 

𝑠𝑠𝑖𝑖 The duration of activity i; 

𝑡𝑡𝑢𝑢𝑢𝑢 The travel time from the location of activity u 
to activity w; 

𝑐𝑐𝑢𝑢𝑢𝑢𝑣𝑣  The travel cost from location of activity u to w 
for vehicle v; 



𝐵𝐵𝑐𝑐 The household travel cost budget; 

𝐵𝐵𝑡𝑡𝑣𝑣 The household travel time budget for vehicle v; 

 
This formulation implies that different elements of 𝑃𝑃�+ can potentially correspond to the same 
physical location. All elements of 𝑃𝑃�− correspond to the same physical location (home). 
Consequently, the travel time and costs between all drop-off nodes are assumed to be zero: 𝑡𝑡𝑢𝑢,𝑢𝑢

𝑣𝑣 =
𝑐𝑐𝑢𝑢,𝑢𝑢 ≡ 0  ∀  𝑢𝑢,𝑤𝑤 ∈ 𝑃𝑃�−, 𝑣𝑣 ∈ 𝐼𝐼. 

Consistent with the HAPP formulation (1), activities are viewed as being ‘picked up’ for 
mathematical purposes by a particular household member at the location where they are 
performed. Once completed with a service duration 𝑠𝑠𝑖𝑖, these activities are ‘dropped-off’ or 
‘delivered’ on the return trip home. Multiple pick-ups are analogous to multiple sojourns or sub-
tours for any given tour. 

Given a household’s objective function, the routing and scheduling policy generated represents a 
space-time diagram germane to the travel behavior analysis literature. Additionally, demand 
functions and vehicle capacity (D) ensure that the schedule of pickups and deliveries do not violate 
any vehicle capacity constraints. For this study, define the capacity D as the maximum number of 
activities serviced within a tour, with demand function: 𝑑𝑑𝑢𝑢 = 1, 𝑢𝑢 ∈ 𝑃𝑃�+.  

The decision variables in this formulation are directly analogous to those of the HAPP and PDPTW 
formulations and are defined as follows: 

𝑋𝑋𝑢𝑢𝑢𝑢𝑢𝑢 ,𝑢𝑢,𝑤𝑤 ∈ 𝑁𝑁, 𝑣𝑣 ∈ 𝐼𝐼,𝑢𝑢 ≠ 𝑤𝑤 Binary decision variable equal to one if vehicle v travels 
from activity u to w and zero otherwise; 

𝑇𝑇𝑢𝑢,𝑢𝑢 ∈ 𝑃𝑃 The time at which participation in activity u begins; 

𝑇𝑇0𝑣𝑣,𝑇𝑇2(𝑛𝑛+𝐼𝐼𝐼𝐼)+1
𝑣𝑣  The time at which vehicle v first departs from home and last 

returns to home, respectively; 

𝑌𝑌𝑢𝑢,𝑢𝑢 ∈ 𝑃𝑃 
 

The total accumulation of demand or loads (activities) 
immediately following the completion of activity u; 

 

A generalized cost or disutility function representing costs for households is minimized with 
respect to a set of constraints that capture the space-time constraints of activities that need to be 
performed. The formulation presented as follows: 



Minimize 𝑍𝑍 = Household Travel Disutility (1) 

 

Subject to: 

� � 𝑋𝑋𝑢𝑢𝑢𝑢𝑣𝑣
𝑢𝑢∈𝑁𝑁𝑣𝑣∈𝐼𝐼

= 1, 𝑢𝑢 ∈ 𝑃𝑃�+  (2) 

� 𝑋𝑋𝑢𝑢𝑢𝑢𝑣𝑣
𝑢𝑢∈𝑁𝑁

− � 𝑋𝑋𝑢𝑢𝑢𝑢𝑣𝑣
𝑢𝑢∈𝑁𝑁

= 0,𝑢𝑢 ∈ 𝑃𝑃, 𝑣𝑣 ∈ 𝐼𝐼 (3) 

� 𝑋𝑋0,𝑢𝑢
𝑣𝑣

𝑢𝑢∈𝑃𝑃�+ 

= 1, 𝑣𝑣 ∈ 𝐼𝐼 (4) 

� 𝑋𝑋𝑢𝑢,2(𝑛𝑛+𝐼𝐼𝐼𝐼)+1
𝑣𝑣

𝑢𝑢∈𝑃𝑃�− 

= 1, 𝑣𝑣 ∈ 𝐼𝐼 (5) 

� 𝑋𝑋𝑢𝑢𝑢𝑢𝑣𝑣
𝑢𝑢∈𝑁𝑁

− � 𝑋𝑋𝑢𝑢,𝑢𝑢+(𝑛𝑛+𝐼𝐼𝐼𝐼)
𝑣𝑣

𝑢𝑢∈𝑁𝑁

= 0,𝑢𝑢 ∈ 𝑃𝑃�+,𝑣𝑣 ∈ 𝐼𝐼 (6) 

𝑇𝑇𝑢𝑢 + 𝑠𝑠𝑢𝑢 + 𝑡𝑡𝑢𝑢,(𝑛𝑛+𝐼𝐼𝐼𝐼)+𝑢𝑢 ≤ 𝑇𝑇(𝑛𝑛+𝐼𝐼𝐼𝐼)+𝑢𝑢,𝑢𝑢 ∈ 𝑃𝑃 (7) 

𝑋𝑋𝑢𝑢𝑢𝑢𝑣𝑣 = 1 ⇒ 𝑇𝑇𝑢𝑢 + 𝑠𝑠𝑢𝑢 + 𝑡𝑡𝑢𝑢𝑢𝑢 ≤ 𝑇𝑇𝑢𝑢,𝑢𝑢,𝑤𝑤 ∈ 𝑃𝑃, 𝑣𝑣 ∈ 𝐼𝐼 (8) 

𝑋𝑋0,𝑢𝑢
𝑣𝑣 = 1 ⇒ 𝑇𝑇0 + 𝑡𝑡0,𝑢𝑢 ≤ 𝑇𝑇𝑢𝑢,𝑢𝑢,𝑤𝑤 ∈ 𝑃𝑃, 𝑣𝑣 ∈ 𝐼𝐼 (9) 

𝑋𝑋𝑢𝑢,2(𝑛𝑛+𝐼𝐼𝐼𝐼)+1
𝑣𝑣 = 1 ⇒ 𝑇𝑇𝑢𝑢 + 𝑡𝑡𝑢𝑢,2(𝑛𝑛+𝐼𝐼𝐼𝐼)+1 ≤ 𝑇𝑇𝑢𝑢,𝑢𝑢,𝑤𝑤 ∈ 𝑃𝑃, 𝑣𝑣 ∈ 𝐼𝐼 (10) 

 

Constraints 2-10 are identical to those in the original HAPP formulation (1) with updated node sets 
to accommodate in-vehicle activities. Constraints 2-6 form a multi-commodity minimum cost flow 
problem. Constraint 7 forces node u (pick-up) to be visited before node (𝑛𝑛 + 𝐼𝐼𝐼𝐼) + 𝑢𝑢 (drop-off). 
Constraints 8-10 describe the compatibility between routes and schedules. 

 

2.3 Solving the Household VRP 

Solving the Household VRP: Given this definition of the VRP faced by households, solving this 
class of problems is known to be NP-hard, indicating that the computational time to reach a 
solution increases infeasibly as the size of the problem increases. A set of VRP heuristics were 
used to feasibly solve the Household VRPs in the analysis sample. Heuristics used in this study 
include: (a) Clark-Wright Savings (CW) and (b) the Node Insertion family (N1, N2, N3) of 
heuristics (Solomon 1987). Each heuristic and their assumed set of parameter values result in 
solutions that favor different metrics, such as vehicle travel time and idle time. A comparison of 



these heuristics was completed. Table 2 provides a description of the heuristics used in this study. 
Table two provides the set of parameters used. 

 

Heuristic Description 

Clark-Wright Savings (CW) 
Initialize with each activity in its own tour; Combine 
tours to give the largest savings in Cost (Distance or 

Travel Time) 

Node Insertion 1 (N1) Insert Nodes to Maximize Savings from Servicing 
each Activity Individually (similar to C-W Savings) 

Node Insertion 2 (N2) Insert Nodes to Minimize Total Route Distance and 
Time (Both) 

Node Insertion 3 (N3) Similar to Node Insertion 1; Account for Schedule 
Urgency 

 

Table 2: VRP Heuristics Considered 

 

 

Heuristic 
Type ID Heuristic Name Parameter Values 

11 Clark-Wright Savings (CW) µ = 1.0 
12 Clark-Wright Savings (CW) µ = 0.2 
1 Node Insertion 1 (N1) µ = 1.0; λ=1.0; α1=1.0; α2=0   
2 Node Insertion 1 (N1) µ = 1.0; λ=2.0; α1=1.0; α2=0   
3 Node Insertion 1 (N1) µ = 1.0; λ=1.0; α1=0; α2=1.0   
4 Node Insertion 1 (N1) µ = 1.0; λ=2.0; α1=0; α2=1.0   
5 Node Insertion 2 (N2) µ = 1.0; α1=0.5; α2=0.5; β1=0.5; β2=0.5  
6 Node Insertion 2 (N2) µ = 1.0; α1=1.0; α2=0.0; β1=0.5; β2=0.5  
7 Node Insertion 2 (N2) µ = 1.0; α1=0; α2=1.0; β1=1.0; β2=0  
8 Node Insertion 3 (N3) µ = 1.0; α1=0.5; α2=0.5; α3=0 
9 Node Insertion 3 (N3) µ = 1.0; α1=0.4; α2=0.4; α3=0.2 

10 Node Insertion 3 (N3) µ = 1.0; α1=0; α2=1.0; α3=0 
 

Table 3: VRP Heuristics Considered – Parameter Values Used 

 



While other heuristics could also have been used, these two sets of heuristics were used due to 
their performance as documented in Solomon (1987). The results from previous studies indicate 
that Node Insertion 1 (N1) performed the best out of all the Node Insertion heuristics. 

 

3.0 Results and Discussion 

This section presents the results of the analysis, including a discussion on implications. The next 
section describes the data preparation required, beginning with the 2012 Oahu Household Travel 
Survey to obtain the analysis sample. 

 

3.1 Analysis Sample Preparation  

This study is concerned with the impact of AVs on households. However, we address the adoption 
of AVs in only a limited manner. The analysis begins with the 2012 Oahu Household Travel Survey, 
which has 4,002 households. For this analysis we only consider households observed with vehicle-
based travel patterns. Example patterns include households that carpool to work and those that 
drive to an express bus route and take the rest of the journey on express bus. The motivation is that 
households who regularly use vehicles are more likely to incorporate AVs into their household 
patterns when they become available. This resulted in 2,976 households being considered in our 
analysis of VRP Heuristics. A summary of these samples is provided below in Table 4. 

Two alternative assumptions also considered on how to prepare the sample of households who 
would adopt and incorporate AVs in their travel-activity patterns would be (a) assuming all 
households will replace their current travel modes with AVs or (b) a proportion of households 
based on a decision mechanisms or stated-preference survey. Neither of these options were feasible 
given the scope of this project. Alternative (a) was infeasible because assuming all households will 
eventually use an AV in the future is extremely unlikely and unrealistic. Alternative (b), while 
appealing, would require more resources and effort to implement. Additionally, validating 
Alternative (b) would be extremely difficult. Therefore, the assumption that households observed 
to use vehicles in their observed patterns from the Oahu Survey was used.   

 

3.1.1 HART System Scenarios 

Given the interest in the HART rail system, a second analysis sample consisting of households that 
used vehicles in their observed patterns and used one of the express bus lines from TheBus, were 
assumed to be a targe market segment for HART, when it opens. Assessing the ridership for HART 
is not an easy task; at the time of this study, HART was not open yet and there is no data on its 
ridership. If we require an additional level of assessment to also identify households likely to use 
HART, this further complicates the assessment. Therefore, analysis on the presence of the HART 
system and AVs was limited to considering households who used vehicles in their observed 
patterns and the express bus services; this was 56 households in total. 



3.2 Comparison of Heuristics for the Household VRP 

Given the household VRP defined by the schedule constraints derived from the Oahu Household 
Travel Survey and the network performance of the Oahu TDFM, heuristics were applied to solve 
the individual household VRPs. The results are summarized in Tables 5 and 6, which show relative 
differences with respect to the heuristics and their parameter value combinations. The following 
metrics were used to evaluate their performance: 

A) Number of Vehicles required to Complete the Activity Schedule (#vehicles): The number of 
vehicles required in the final solution from the heuristic; we hypothesize this would 
decrease relative to what households were observed to use in the survey; 
 

B) Total Travel Time of the Household Vehicle Fleet (mins): The total travel time across all 
vehicles in the household fleet; 
 

C) Total Idle Time of the Household Vehicle Fleet (mins): The total duration household 
vehicles were idle or “parked” during the day; and 
 

D) Total Duration Out-of-Home of the Household Vehicle Fleet (mins): The total duration 
vehicles spend away from the home location. 

Looking at Table 5, the relative to the average performance for the heuristics were consistent with 
the relative performance of the heuristics reported in Solomon (1987). Overall, heuristic N1 was 
found to outperform N2 and N3 for Total Travel Time. However, for total vehicle idle time, N2 
and N3 were relatively better.  

To assess the potential improvements to households, the difference between the heuristic solutions 
and the observe travel-activity pattern was determined. These. A positive difference indicated the 
observed pattern had a metric value higher than the solution. For example, looking at Table 6(a), 
the first combination of parameters for N1 had a difference of 78 minutes, indicating on average 
household AV patterns had a little more than one hour savings relative to the observed travel-
activity pattern. Looking at Table 6(a), Node Insertion Heuristic 1 (N1) and the Clarke-Wright 
Savings Heuristics (CW) saw positive improvements (lower travel times) on average for the total 
travel time of the household fleet. Node Insertion Heuristic 2 (N2) and 3 (N3) saw travel time 
increases, on average. All heuristics saw decreases in the number of vehicles each household 
required in their fleets, except for the CW heuristic. There was marginal difference between 
households who took the express bus and under the HART scenarios.  

 

3.3 Assessing the Potential Impact of Autonomous Vehicles for Households 

To assess the potential impacts of AVs, a regression model between the relative change in the 
performance metrics (A-D) from the previous section for N1 and household characteristics was 
estimated, including the planning district location of their residence. Only heuristic N1 was further 
examined since it produced solutions with better total travel times and was comparable for total 



idle time. The mean relative change in performance metrics between the status quo and our AV 
scenarios were shown in Table 6 with respect to total travel time and number of vehicles. The status 
quo responses are assumed to be the observed travel patterns from the 2012 Oahu Household 
Travel Survey. Outcomes from AV scenarios were the final solutions from each heuristic.  

Looking at Tables 7(a-d), with respect to AVs, households in Wai'anae and East Honolulu 
potentially stand to benefit in terms of travel time savings from the non-AV context (observed 
travel patterns), controlling for other household characteristics. Relative to other planning districts, 
the average marginal improvement from households in these two planning districts have the 
following ranges, depending on district: Wai'anae – 13.7 to 15.2 minutes; East Honolulu – 6.7 to 
9.6 minutes. These two planning districts showed consistent marginal benefits from using AVs to 
complete their observed set of activities. Estimation results also showed that the Ewa district had 
a total travel time improvement of 11.9 minutes per household under an AV context, and the 
Ko'olau Loa district showed an increase of 21.4 minutes, but for one set of heuristic parameters. 
With respect to the number of vehicles required, under the AV scenario, all heuristic solutions 
produced a reduction, except for solutions from the Clark-Wright Savings (CW) heuristic. One 
explanation is that CW heuristic does not optimize for fleet size. With respect to household 
characteristics, household size and number of workers consistently explained these differences, 
statistically. 

For scenarios where the HART system was introduced [s1(exp)], the change in impacts from AVs 
was marginal and statistically insignificant. However, this was under the conservative assumption 
that only the 56 households observed using both a vehicle and an express bus route on TheBus 
system would try to incorporate HART for at least a portion of their travel chain segment in 
combination with an AV. To fully understand the impact of the HART station, future ridership 
levels, including household demographics, would need to be determined.   

 

 

 

 



 

Table 4: Analysis Sample Characteristics 

 

 

 

 

 

Variable Mean Median Std.Dev. Min 25% 75% Max Mean Median Std.Dev. Min 25% 75% Max
Household Size 2.2 2 1.2 1 1 3 10 2.4 2 1.3 1 2 3 10

Number of Employed Members 1.2 1 0.93 0 1 2 6 1.4 1 0.9 0 1 2 6
Number of Student Members 0.42 0 0.82 0 0 1 6 0.51 0 0.88 0 0 1 6

Number of Members with Driver's License 1.7 2 0.87 0 1 2 7 1.9 2 0.79 0 1 2 7
Number of Operating Vehicles 1.8 2 0.85 0 1 2 8 1.9 2 0.85 0 1 2 8

Number of Out-of-Home Activities Requiring AV --- --- --- --- --- --- --- 7.6 6 5.8 1 4 10 57

1= Less than $10,000
2= $10,000 to $19,999
3= $20,000 to $29,999
4= $30,000 to $39,999
5= $40,000 to $49,999
6= $50,000 to $59,999
7= $60,000 to $74,999
8= $75,000 to $99,999

9= $100,000 to $149,999
10= $150,000 or more

(1) Central Oahu
(2) East Honolulu

(3) Ewa
(4) Ko'olau Loa

(5) Ko'olau Poko
(6) North Shore

(7) PUC
(8) Wai'anae

TOTAL
3.2%

8.9%
9.1%

19.0%

99%

21.0%
7.7%
7.7%
1.2%

14.0%
1.7%

44.0%
3.0%
100%

7.2%
1.2%

13.0%
1.7%

47.0%

6.8%

19.0%
16.0%
7.9%

9.7%
22.0%
20.0%

2012 Oahu Household Travel Survey (N = 4002 Households)

Proportion of Sample (%): 2012 Oahu Survey

Analysis Sample (N = 2976 Households)

Proportion of Sample (%): Analysis Sample

Proportion of Sample (%) Proportion of Sample (%)
3.1%
4.5%
7.5%
9.3%

9.8%

1.3%
1.9%
4.9%
7.7%
9.5%
9.3%

9.5%



 

  NVEH TT (min) WT (min) DOH (min) 

Node Insertion 1 µ = 1.0; λ=1.0; α1=1.0; α2=0   1.2 78 507 584 
Node Insertion 1 µ = 1.0; λ=2.0; α1=1.0; α2=0   1.2 70 512 582 
Node Insertion 1 µ = 1.0; λ=1.0; α1=0; α2=1.0   1.1 75 504 579 

Node Insertion 1 µ = 1.0; λ=2.0; α1=0; α2=1.0   1.1 74 504 578 
Node Insertion 2 µ = 1.0; α1=0.5; α2=0.5; β1=0.5; β2=0.5  1.3 136 470 606 
Node Insertion 2 µ = 1.0; α1=1.0; α2=0.0; β1=0.5; β2=0.5  1.3 136 470 606 
Node Insertion 2 µ = 1.0; α1=0; α2=1.0; β1=1.0; β2=0  1.3 145 466 611 
Node Insertion 3 µ = 1.0; α1=0.5; α2=0.5; α3=0 1.3 146 475 620 

Node Insertion 3 µ = 1.0; α1=0.4; α2=0.4; α3=0.2 1.3 144 468 612 
Node Insertion 3 µ = 1.0; α1=0; α2=1.0; α3=0 1.2 116 489 605 

Clark-Wright Savings µ = 1.0 1.9 64 817 881 
Clark-Wright Savings µ = 0.2 1.8 68 722 789 

 

Table 5:  Performance Metrics Across Heuristics – Analysis Sample 

 

 

 

 

 

 

 



Heuristic Parameters S0 S0 (EXP) S1 (EXP) 
Node Insertion 1 µ = 1.0; λ=1.0; α1=1.0; α2=0   0.74 7.7 6.4 
Node Insertion 1 µ = 1.0; λ=2.0; α1=1.0; α2=0   9 17 15 
Node Insertion 1 µ = 1.0; λ=1.0; α1=0; α2=1.0   4 7.2 5.7 
Node Insertion 1 µ = 1.0; λ=2.0; α1=0; α2=1.0   4.6 7.7 6.3 
Node Insertion 2 µ = 1.0; α1=0.5; α2=0.5; β1=0.5; β2=0.5  -57 -49 -51 
Node Insertion 2 µ = 1.0; α1=1.0; α2=0.0; β1=0.5; β2=0.5  -57 -49 -51 
Node Insertion 2 µ = 1.0; α1=0; α2=1.0; β1=1.0; β2=0  -66 -57 -59 
Node Insertion 3 µ = 1.0; α1=0.5; α2=0.5; α3=0 -67 -61 -63 
Node Insertion 3 µ = 1.0; α1=0.4; α2=0.4; α3=0.2 -65 -56 -59 
Node Insertion 3 µ = 1.0; α1=0; α2=1.0; α3=0 -38 -25 -28 

Clark-Wright Savings µ = 1.0 21 30 27 
Clark-Wright Savings µ = 0.2 17 22 21 

Sample Size (N)  2976 56 56 
 

Table 6(a):  Impact of AVs on the Average Total Household Vehicle Fleet Travel Time Across Scenarios 

 

 

 

 

 

 

 

 

 



 

Heuristic Parameters S0 S0 S1 
Node Insertion 1 µ = 1.0; λ=1.0; α1=1.0; α2=0   0.28 0.45 0.45 
Node Insertion 1 µ = 1.0; λ=2.0; α1=1.0; α2=0   0.29 0.38 0.38 
Node Insertion 1 µ = 1.0; λ=1.0; α1=0; α2=1.0   0.34 0.51 0.51 
Node Insertion 1 µ = 1.0; λ=2.0; α1=0; α2=1.0   0.34 0.49 0.49 
Node Insertion 2 µ = 1.0; α1=0.5; α2=0.5; β1=0.5; β2=0.5  0.21 0.42 0.42 
Node Insertion 2 µ = 1.0; α1=1.0; α2=0.0; β1=0.5; β2=0.5  0.21 0.42 0.42 
Node Insertion 2 µ = 1.0; α1=0; α2=1.0; β1=1.0; β2=0  0.19 0.42 0.42 
Node Insertion 3 µ = 1.0; α1=0.5; α2=0.5; α3=0 0.17 0.38 0.38 
Node Insertion 3 µ = 1.0; α1=0.4; α2=0.4; α3=0.2 0.18 0.38 0.38 
Node Insertion 3 µ = 1.0; α1=0; α2=1.0; α3=0 0.22 0.45 0.45 

Clark-Wright Savings µ = 1.0 -0.41 -0.32 -0.34 
Clark-Wright Savings µ = 0.2 -0.32 -0.3 -0.3 

Sample Size (N)  2976 56 56 
 

Table 6(b):  Impact of AVs on the Average Number of Vehicles Required for Households Across Scenarios 

 

 

 

 

 

 



 

Table 7(a): Linear Regression of Marginal Impacts on HH Vehicle Fleet Travel Times – Type 1 

Variable Coefficient Std. Error t-statistic Coefficient Std. Error t-statistic Coefficient Std. Error t-statistic
Constant 7.203 3.635 1.981 6.622 3.764 1.760 4.247 2.311 1.838
HH Size 11.942 1.150 10.384 11.602 1.151 10.079 11.728 1.141 10.275

HH Students -3.487 1.288 -2.708 -3.122 1.292 -2.416 -3.148 1.278 -2.463
HH Workers -6.412 1.150 -5.577 -6.160 1.151 -5.354 -6.044 1.132 -5.341

HH Licensed Drivers -5.281 1.634 -3.232 -5.187 1.634 -3.174 -5.270 1.624 -3.245
Duration at Current Home (yrs) -0.163 0.058 -2.800 -0.147 0.060 -2.461 -0.177 0.054 -3.297

Operational Vehicles -4.283 1.290 -3.319 -4.436 1.293 -3.430 -4.351 1.256 -3.465
Rent (1/0) 3.683 2.434 1.513 3.913 2.451 1.597 --- --- ---

Single-Family Attached Unit (1/0) -1.691 2.940 -0.575 -1.532 2.939 -0.521 --- --- ---
Multi-Family Dwelling (1/0) -2.878 2.443 -1.178 -2.425 2.533 -0.957 --- --- ---

HH Income: Less than $10,000 -2.190 7.337 -0.298 -1.313 7.331 -0.179 --- --- ---
HH Income: $10,000 to $19,999 -4.199 6.353 -0.661 -4.403 6.369 -0.691 --- --- ---
HH Income: $20,000 to $29,999 3.390 4.331 0.783 3.278 4.358 0.752 --- --- ---
HH Income: $30,000 to $39,999 -3.871 3.949 -0.980 -3.635 3.966 -0.917 --- --- ---
HH Income: $40,000 to $49,999 -4.231 3.579 -1.182 -4.469 3.603 -1.240 --- --- ---
HH Income: $50,000 to $59,999 -2.170 3.532 -0.614 -1.835 3.543 -0.518 --- --- ---
HH Income: $60,000 to $74,999 -1.746 3.453 -0.506 -1.593 3.458 -0.461 --- --- ---
HH Income: $75,000 to $99,999 -2.560 3.023 -0.847 -2.224 3.044 -0.731 --- --- ---

HH Income: $100,000 to $149,999 -6.505 2.722 -2.390 -6.378 2.730 -2.336 -5.229 2.103 -2.487
HH Income: $150,000 or more --- --- --- --- --- --- --- --- ---

Central Oahu (1/0) --- --- --- -3.377 2.478 -1.363 --- --- ---
East Honolulu (1/0) --- --- --- 8.201 3.219 2.548 9.621 3.008 3.199

Ewa (1/0) --- --- --- 5.319 3.313 1.606 --- --- ---
Ko'olau Loa (1/0) --- --- --- -8.145 7.548 -1.079 --- --- ---

Ko'olau Poko (1/0) --- --- --- -3.674 2.815 -1.305 --- --- ---
North Shore (1/0) --- --- --- -9.772 7.856 -1.244 --- --- ---

Primary Urban Center (1/0) --- --- --- --- --- --- --- --- ---
Wai'anae (1/0) --- --- --- 12.726 4.453 2.858 13.749 4.286 3.208

N
R^2
SSE

2976 2976 2976
0.07523 0.08415 0.07873
6355906 6294542 6331812



 

Table 7(b): Linear Regression of Marginal Impacts on HH Vehicle Fleet Travel Times – Type 2 

Variable Coefficient Std. Error t-statistic Coefficient Std. Error t-statistic Coefficient Std. Error t-statistic
Constant 15.346 3.496 4.389 12.849 3.616 3.554 4.474 2.210 2.025
HH Size 10.331 1.106 9.340 10.029 1.106 9.069 9.760 0.729 13.392

HH Students -0.732 1.239 -0.591 -0.458 1.242 -0.369 --- --- ---
HH Workers -5.299 1.106 -4.792 -5.055 1.105 -4.573 -4.731 1.078 -4.389

HH Licensed Drivers -3.060 1.571 -1.947 -3.193 1.570 -2.034 -2.806 1.501 -1.870
Duration at Current Home (yrs) -0.199 0.056 -3.545 -0.148 0.057 -2.590 -0.150 0.051 -2.944

Operational Vehicles -4.112 1.241 -3.313 -4.380 1.243 -3.525 -3.375 1.205 -2.801
Rent (1/0) 0.668 2.341 0.285 1.739 2.354 0.739 --- --- ---

Single-Family Attached Unit (1/0) -1.213 2.828 -0.429 -1.046 2.823 -0.371 --- --- ---
Multi-Family Dwelling (1/0) -6.315 2.350 -2.687 -4.179 2.433 -1.718 --- --- ---

HH Income: Less than $10,000 -7.062 7.057 -1.001 -7.337 7.043 -1.042 --- --- ---
HH Income: $10,000 to $19,999 -8.977 6.110 -1.469 -10.928 6.119 -1.786 --- --- ---
HH Income: $20,000 to $29,999 -2.484 4.165 -0.596 -3.987 4.187 -0.952 --- --- ---
HH Income: $30,000 to $39,999 -8.587 3.798 -2.261 -9.444 3.810 -2.479 --- --- ---
HH Income: $40,000 to $49,999 -7.654 3.442 -2.223 -9.166 3.462 -2.648 --- --- ---
HH Income: $50,000 to $59,999 -4.495 3.397 -1.323 -5.262 3.404 -1.546 --- --- ---
HH Income: $60,000 to $74,999 -5.216 3.321 -1.571 -5.848 3.322 -1.760 --- --- ---
HH Income: $75,000 to $99,999 -3.072 2.908 -1.057 -3.905 2.924 -1.335 --- --- ---

HH Income: $100,000 to $149,999 -5.466 2.618 -2.088 -6.189 2.623 -2.360 --- --- ---
HH Income: $150,000 or more --- --- --- --- --- --- --- --- ---

Central Oahu (1/0) --- --- --- 2.561 2.380 1.076 --- --- ---
East Honolulu (1/0) --- --- --- 7.960 3.092 2.574 8.715 2.900 3.005

Ewa (1/0) --- --- --- 12.393 3.182 3.894 11.925 2.966 4.021
Ko'olau Loa (1/0) --- --- --- -11.637 7.252 -1.605 --- --- ---

Ko'olau Poko (1/0) --- --- --- -0.243 2.704 -0.090 --- --- ---
North Shore (1/0) --- --- --- 4.352 7.548 0.577 --- --- ---

Primary Urban Center (1/0) --- --- --- --- --- --- --- --- ---
Wai'anae (1/0) --- --- --- 15.909 4.278 3.719 15.154 4.122 3.677

N
R^2
SSE

2976 2976 2976
0.08166 0.08415 0.08602
5879397 5809308 5851441



Table 7(c): Linear Regression of Marginal Impacts on HH Vehicle Fleet Travel Times – Type 3 

Variable Coefficient Std. Error t-statistic Coefficient Std. Error t-statistic Coefficient Std. Error t-statistic
Constant 15.946 3.585 4.447 15.336 3.711 4.132 9.317 2.316 4.024
HH Size 10.274 1.134 9.059 9.997 1.135 8.808 9.448 0.757 12.476

HH Students -1.594 1.270 -1.255 -1.004 1.274 -0.788 --- --- ---
HH Workers -6.669 1.134 -5.881 -6.466 1.135 -5.699 -5.949 1.114 -5.338

HH Licensed Drivers -4.249 1.611 -2.637 -4.245 1.611 -2.635 -3.972 1.544 -2.573
Duration at Current Home (yrs) -0.238 0.058 -4.138 -0.211 0.059 -3.593 -0.229 0.052 -4.397

Operational Vehicles -3.767 1.273 -2.960 -4.119 1.275 -3.230 -3.614 1.240 -2.915
Rent (1/0) 1.715 2.401 0.714 2.090 2.416 0.865 --- --- ---

Single-Family Attached Unit (1/0) -0.377 2.900 -0.130 -0.107 2.898 -0.037 --- --- ---
Multi-Family Dwelling (1/0) -2.389 2.410 -0.991 -1.643 2.497 -0.658 --- --- ---

HH Income: Less than $10,000 -10.784 7.237 -1.490 -10.872 7.229 -1.504 --- --- ---
HH Income: $10,000 to $19,999 -10.433 6.266 -1.665 -11.702 6.280 -1.863 --- --- ---
HH Income: $20,000 to $29,999 -0.998 4.271 -0.234 -2.022 4.297 -0.471 --- --- ---
HH Income: $30,000 to $39,999 -9.644 3.895 -2.476 -10.124 3.911 -2.589 --- --- ---
HH Income: $40,000 to $49,999 -11.063 3.530 -3.134 -11.702 3.553 -3.294 -6.443 2.917 -2.209
HH Income: $50,000 to $59,999 -5.897 3.484 -1.693 -6.109 3.494 -1.749 --- --- ---
HH Income: $60,000 to $74,999 -5.997 3.405 -1.761 -6.047 3.410 -1.774 --- --- ---
HH Income: $75,000 to $99,999 -5.111 2.982 -1.714 -4.967 3.002 -1.655 --- --- ---

HH Income: $100,000 to $149,999 -8.137 2.685 -3.031 -8.022 2.692 -2.980 -4.021 2.095 -1.919
HH Income: $150,000 or more --- --- --- --- --- --- --- --- ---

Central Oahu (1/0) --- --- --- -0.124 2.443 -0.051 --- --- ---
East Honolulu (1/0) --- --- --- 6.561 3.174 2.067 7.941 2.967 2.676

Ewa (1/0) --- --- --- 3.828 3.266 1.172 --- --- ---
Ko'olau Loa (1/0) --- --- --- -21.174 7.443 -2.845 -21.378 7.315 -2.923

Ko'olau Poko (1/0) --- --- --- -3.845 2.775 -1.386 --- --- ---
North Shore (1/0) --- --- --- 0.698 7.747 0.090 --- --- ---

Primary Urban Center (1/0) --- --- --- --- --- --- --- --- ---
Wai'anae (1/0) --- --- --- 14.566 4.391 3.317 14.351 4.227 3.395

N
R^2
SSE

2976 2976.000 2976.000
0.0746 0.084 0.079

6182307 6120031 6154044



Table 7(d): Linear Regression of Marginal Impacts on HH Vehicle Fleet Travel Times – Type 4

Variable Coefficient Std. Error t-statistic Coefficient Std. Error t-statistic Coefficient Std. Error t-statistic
Constant 13.567 3.563 3.808 12.712 3.690 3.445 7.002 2.312 3.029
HH Size 10.493 1.127 9.310 10.143 1.129 8.988 9.799 0.745 13.146

HH Students -0.630 1.262 -0.499 -0.242 1.267 -0.191 --- --- ---
HH Workers -6.552 1.127 -5.813 -6.401 1.128 -5.674 -6.106 1.107 -5.518

HH Licensed Drivers -4.096 1.602 -2.557 -4.028 1.602 -2.514 -3.835 1.533 -2.501
Duration at Current Home (yrs) -0.178 0.057 -3.114 -0.145 0.058 -2.484 -0.170 0.052 -3.272

Operational Vehicles -3.913 1.265 -3.094 -4.111 1.268 -3.242 -3.247 1.227 -2.646
Rent (1/0) 1.218 2.386 0.510 1.828 2.403 0.761 --- --- ---

Single-Family Attached Unit (1/0) 0.594 2.882 0.206 0.705 2.881 0.245 --- --- ---
Multi-Family Dwelling (1/0) -2.079 2.395 -0.868 -1.128 2.483 -0.454 --- --- ---

HH Income: Less than $10,000 -10.761 7.192 -1.496 -10.883 7.188 -1.514 --- --- ---
HH Income: $10,000 to $19,999 -10.468 6.227 -1.681 -12.021 6.244 -1.925 --- --- ---
HH Income: $20,000 to $29,999 -0.916 4.245 -0.216 -2.185 4.273 -0.511 --- --- ---
HH Income: $30,000 to $39,999 -8.955 3.871 -2.313 -9.622 3.888 -2.475 --- --- ---
HH Income: $40,000 to $49,999 -9.759 3.508 -2.782 -10.859 3.533 -3.074 -5.918 2.905 -2.037
HH Income: $50,000 to $59,999 -4.921 3.462 -1.421 -5.433 3.474 -1.564 --- --- ---
HH Income: $60,000 to $74,999 -6.249 3.384 -1.847 -6.515 3.390 -1.922 --- --- ---
HH Income: $75,000 to $99,999 -4.733 2.963 -1.597 -5.083 2.985 -1.703 --- --- ---

HH Income: $100,000 to $149,999 -7.937 2.668 -2.975 -8.125 2.677 -3.036 -4.057 2.082 -1.948
HH Income: $150,000 or more --- --- --- --- --- --- --- --- ---

Central Oahu (1/0) --- --- --- 0.265 2.429 0.109 --- --- ---
East Honolulu (1/0) --- --- --- 5.588 3.156 1.770 6.667 3.017 2.210

Ewa (1/0) --- --- --- 6.818 3.248 2.099 --- --- ---
Ko'olau Loa (1/0) --- --- --- -11.553 7.401 -1.561 --- --- ---

Ko'olau Poko (1/0) --- --- --- -4.374 2.759 -1.585 --- --- ---
North Shore (1/0) --- --- --- 2.827 7.703 0.367 --- --- ---

Primary Urban Center (1/0) --- --- --- --- --- --- --- --- ---
Wai'anae (1/0) --- --- --- 15.032 4.366 3.443 14.579 4.205 3.467

N
R^2
SSE

2976
0.08114
6097093

2976 2976
0.07973 0.080
6106452 6050434



4.0 Conclusions 

This study investigates the potential impacts of AVs on household vehicle fleet usage was 
considered. The motivation is that households which potentially see an improvement in their 
experience performance metrics, such as total travel time across household vehicles and total 
number of vehicles needed to complete a set of activities, are more likely to use AVs in the future. 
While the results did indicate a certain market segment of households potentially see benefits from 
AVs, the assumption behind these estimates requires further investigation. The impact of the HART 
system was minimal, but the market segment potentially affected was a conservative estimate in 
this study. The rail was not open at the time of this study and data on ridership was unavailable. 
However, given a more robust estimate for the potential market of HART, the estimates for AV and 
HART scenarios could be revisited. 

Future work includes incorporating the results into the existing Oahu TDFM. This study provided 
a method to generate potential household AV patterns. Given that the Oahu TDFM relies on the 
synthetic generation of a population and its travel-activity patterns, integrating the two would not 
present a serious issues, in principle. 
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